[패턴인식] 6. 선형대수학 - (1) 벡터이론

2022. 4. 4. 15:07패턴인식

벡터

크기와 방향을 가지는 물리량

특징벡터

패턴인식에서는 인식 대상이 되는 객체가 특징으로 표현되고 특징은 차원을 가진 벡터로 표현된다.

대수학적인 계산을 위해서 특징벡터를 행렬로 표현하여 N차원 공간 상의 한 점의 데이터로 특징을 다루게 된다.

관례적으로 이러한 특징벡터는 "N X 1"벡터로 간주한다.

벡터의 크기(norm)

 

  • 예제(1) - 벡터 원소가 아래와 같이 3, 4라면 크기(norm)는? - 답: 5

단위벡터(unit vector)

벡터의 크기가 1인 벡터를 "단위(unit)"벡터라고 한다.

벡터 v가 0이 아닌 벡터라면 v 방향의 단위벡터 u는 아래와 같이 표현한다.

이와 같이 주어진 벡터와 방향이 같은 단위벡터를 구하는 과정을 벡터의 정규화(normalization)이라고 한다.

 

  • 예제(2) - 벡터 원소가 예제(1)의 벡터와 같은 방향이라면 단위벡터 u는 무엇인가, 그리고 그 단위벡터 u의 크기는?